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ABSTRACT

This paper proposes a method for minimum mean squared er-
ror (MMSE) adaptive waveform design (AWD) in multiple-
input-multiple-output (MIMO) active sensing systems which
are used to track moving targets. The method proposed herein
prompts two computational improvements compared to a re-
lated method for static targets. Consideration of moving tar-
gets also introduces the possibility of ‘model mismatch’ be-
tween the actual motion of the targets, and the model available
to the MMSE AWD system. Results show that the proposed
method leads to an improvement in mean squared error per-
formance of up to 29% compared to the non-adaptive case.

Index Terms— Adaptive waveform design, optimal de-
sign, MMSE, MIMO, active sensing

1. INTRODUCTION

Active sensing systems have the definitive property that en-
ergy is transmitted and reflected off one or more targets which
is received and used to gain information about parameters as-
sociated with these targets. This motivates the key question
of how best to transmit energy to maximise the information
gain. Prior research on this has primarily concerned radar as
the active sensing modality, known as cognitive radar, and
various articles provide a good overview of this topic [1-3].
More specifically, Huleihel ef al include a schematic
diagram of an active sensing architecture that is generally
applicable [4, Fig. 1]. This active sensing formulation is a
good fit for spatial waveform shaping using multiple-input-
multiple-output (MIMO) active sensing systems, for example,
MIMO radar and sonar [5], which is our focus in this paper.
A number of criteria have been proposed to define what is
meant by maximising the information gain concerning the
target parameters, including maximising the mutual informa-
tion [6-8], maximising the signal-to-noise ratio [9-12] and
minimising the mean squared error of the target parameter
estimation (MMSE estimation) [13]. These criteria can be
interpreted in terms of optimal experimental design [14],
leading to the conclusion that MMSE (A-optimal) estimation
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is a good criterion in general [15].

So it follows that we consider MMSE adaptive wave-
form design (AWD) in this paper. [13] expresses analyti-
cally the cost function for MMSE AWD, and demonstrates
how MMSE AWD can be practically implemented using
numerical sums to approximate the integrals present in the
aforementioned cost function. Notably, [13] considers only
static targets (as the purpose was to use a simple set-up to
prove the principle of the method proposed therein), and in
this paper we build on the analysis in [13] to enable MMSE
AWD for moving targets and thus make an important step
towards developing a physically representative MMSE AWD
method. Additionally, this shift from a static to a dynamic
setting prompts some theoretical refinements in the MMSE
AWD method and the particle filter (PF), which conducts
the underlying Bayesian estimation of the target parameters,
leading to a reduction in the computational complexity. Fi-
nally, the formulation we present incorporates the possibility
of a discrepancy between the actual motion of the targets and
the model of target motion available to the MIMO sensing
system, and results show that our MMSE AWD method is
effective both with and without such a model mismatch.

2. SYSTEM MODEL

We start with the standard MIMO active sensing system for-
mulation [16] (with Np transmission elements, N receiving
elements and L snapshots per step):

Xy = Hy(61)Sk + Ny, (D

where S, € CNT*L ig the transmitted waveform, X, €
CNrxL is the received waveform, N, € CNeXL is additive
white Gaussian noise, H, € CN2XN7 represents the chan-
nel response as a non-linear function (in general) of 8, =
[R(ag); S ); ¢ in which oy, and ¢y, are vectors of com-
plex attenuations and angles of the @)’ targets respectively,
i.e., oy € (CQIXI, oy € RQ' %1, This enables us to define:

o
H;, = Y [ewqar((@rlg)at (o), 2)

where ar € CVrX! and ap € CNT*1 are the steering vec-
tors for the receive and transmit arrays respectively.
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3. MMSE AWD METHOD FOR STATIC TARGETS

First we summarise the MMSE AWD method for static targets
[13], which we will subsequently generalise to apply to the
moving target scenario. Starting with the expected covariance
matrix, first expressed in [13, Eq. (11)] 1.

P ://(ék — Ok)(ék —0,)7

p(0;, X 1, SF 1) p(X |05, Si) dX ), A6y, (3)

where 0, = E(6;|X;,, XF~1 S, 8 1), ie., the expected
estimate of Oy, itself a random variable. Which in turn en-
ables the MMSE optimisation cost function to be expressed:

tr(Ek) w.r.t. Sy )
tr (£SxSH) <P

minimise:
subject to:

where tr(.) is the matrix trace operation and P is the total
transmit power per step. A particle filter (PF) was used to
estimate the probability density function (PDF) of the target
parameters at each step ( [13] initialised the PF particles on a
regular grid and didn’t resample):

Np
p(Or) =Y w56, — 6)"), (5)
=1

where wy, is the weight of the kth particle, O,g). The PF was
itself sampled, to give an additional random set of size Ng
(by definition); for the mth sample:

0;(7”) ~ ZNP w}(j)é(egm) _ 9](:'))

i=1

m LWk O ©)
XM~ p(X{™M 6™, 84(0))

These definitions were used to numerically approximate the

cost function. To do so, it was convenient to use vectorised

forms of Sy, and X, split into real and imaginary components:

si, £ [R(vec(Sk)); S(vec(Sk))] and similarly for X. HY

was defined as L copies of Hy, positioned on the leading di-

agonal of a larger matrix, whose other elements are all zero,

from which H} £ [R(HY), —S(HY); S(HY), R(HY)] was
also defined. This led to the expression:

Ns o
Y. Y — “m T m 7
kR X mz::l = UmUm, )

where:

pC< 16, 51)

Um = ) (8)
px™16,™ 51.(0))
Ns /(m’) 9/(m’) 12
5= Z P(Xk ‘ k ,Sk) ©)

S (16 s),(0))
N 7 m '3 7
" _(Zi_”lw,i)p(xg 6y, s1)6,” —0;(’”)) (10)
m N 7 m 7 :
SN wp(™ 61 s)

Lthis expression is the exact cost function of which Huleihel ef al optimise
a lower bound [4, Eq. (6)]

The MMSE AWD method used gradient descent to optimise
the cost function, therefore it was also necessary to express:

Ns
v

vs; (Eg) = Z vask (uﬁum)
m=1

Vg (V) — v, Vg (D
N + (Vm) (D)

1”}2

uflum,(l 1)

a single element of V¢ (ul u,,) is expressed in (12), also:

Ve, (p(x™16,™ 51))

vs’ (Um) = m m (13)
‘ px™ 16, 5,(0))
Vo) 5o YA )
SeAT/ 1m)19/(m") o o)y
m’=1 p(Xk ‘ k ’Sk( ))

where:
exp(—(x; — Hysp) "R, ' (x), — Hys)))
V/(27)2N5 det(R,,)

P[0k, s},) =

Y

(15)
and

Ve (0(x|0k,s},))
= 2p(x,|60k, s;,) (HY R, 'x;, — Hi' R, "Hy;s}.) (16)

where R,, is the covariance of the noise, which is propor-
tional to the identity matrix. Finally, the power constraint was
accounted for by taking the component of the gradient per-
pendicular to s), as the direction of descent:
Ve (X)) s
V4 (5)) = Vi ) — s T
E Sk

a7

4. MMSE AWD METHOD FOR MOVING TARGETS

To generalise the static target MMSE AWD method to apply
to the case where the targets can move, it is necessary to ex-
tend the system model to account for this target motion by
statistically defining the actual variation of the target param-
eters from one step to the next:

0, =f(0r—1,vE—1), (18)

where f(.) is an arbitrary function and vj_ is noise, which
is independent of IN,%. Importantly, we also define the model
for the variation of the target parameters which is available to
the MIMO active sensing system:

0, = £(6_1). (19)

It can be seen that this has implications for the PF: whereas for
the static target case the particles would remain at their initial
location throughout, for the moving target case we have that:

6. =f@6" ) (20)

%in general, the formulation developed in this paper would apply if f(.)
were to change at each step, however for simplicity we fix f(.)
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(i) ap(x, (™ 105" 5%) o) (
a(uﬁum) _ 2uT Zz 1wk 8Sk,n 0 B Z
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05}, "N wpx"™ 60 s

(m 7 2
(SN wp(™ 6 51))
(12)

if (+) requires a random variable, an independent value is
drawn for each :.

The ability of the particles to move has profound impli-
cations for the operation and effectiveness of the PF. In [13],
the particles were placed on a regular grid, because the lack
of target parameter variation meant that the particles locations
would not vary throughout. However, the dynamic model that
we consider herein does allow the particle locations to vary,
thus we do not need to initialise the PF particles on a grid,
and it also means that resampling is beneficial [17, Chap-
ter 3]. The randomised particle initialisation, particle mo-
tion and particle resampling can be thought of as the target
motion enabling more a more efficient implementation of the
PF — as particles are quickly removed from locations of low
probability density and re-used at locations of high probabil-
ity density. This is a generally applicable feature of the PF,
however there is also a further computational saving that is
specific to our MMSE adaptive waveform design algorithm.
To see this, note that the expressions (10) and (12) implicitly
use the equality:

O, ~ 27 1wk p(Xk|0](€)’sk)0()
1 .
SN wp(x, |01 s,)

The additional saving is that we can numerically approximate
0, by averaging over the set of 6, rather than 6y, that is:

5, ~ 21016, 5)6,"
OARRICAL/ARNE

This can be interpreted as using a subset of the particles
at locations of high probability density. Crucially, we now
require O(N2(Q + LNrpNpg)) operations for cost func-
tion evaluation, rather than O(NgNp(Q + LN7Ng)); and
O(NZ(LNrQ+ L?NZNg)) operations for evaluation of the
gradient of the cost function, rather than O(NsNp(LN7Q +
L2NZNg)). As the number of particles, Np, no longer ap-
pears in the computational complexity expression, a suitably
high resolution PF can be used for underlying parameter es-
timation, without needing to have an adverse effect on the
computational complexity of the AWD. Putting together the
moving target model and the switch from summing over Np
to summing over Ng, we can replace (7) with:

ey

(22)

Ns
Sersy =Y ala,, (23)
v

m=1

where (replacing (10)):
<Z p ( 1(m) |0/(1)
i 1=

Uy, =

0’(1) m
Z (x /(m)|6/(z ) ) _0;@( )) : 24
= lp

We also express the gradient of the new cost function (replac-
ing (11)):

Ng
ZNI :me m)
— v

Vg (V) — v, Vg (0
+ A )~2 L0 )y, (25)
v

where a single element of Vg, (ul u,,) is expressed in (26)
(replacing (12)). Which leads to the final expression for the
component of the gradient perpendicular to s} as the direc-
tions of descent (replacing (17)):

(Vs (Z{) s}

1T o1
Sk Sk

Vi, (1) = Ve, (51) — si @7)

5. NUMERICAL RESULTS

We numerically simulate a MIMO active sensing system
with co-located half-wavelength spaced transmit and receive
arrays based on the set-up specified in [13, 15]. We set
Nr = Ngp =5, L =1, Ng = 250, Np = 1000 with the
threshold for resampling set to 0.9, ASNR = 0 dB where
ASNR £ |a|?PNgL/(0.502) (in which the noise variance,
o2 is the variance of each of the real and imaginary compo-
nents). We assume that « is known, and all its elements have
equal magnitude. We estimate the vector of two unknown
target angles ¢ for 1 < k < 30. We consider two scenarios
(N (mean, covariance) denotes a multivariate normal):

1. A random walk with no model mismatch: 6, =
£1(0p—1,vek—1) = Or_1 + Vg1, Where vp_; ~
N(0,Ly); f; = f1; 6 = [-70,—10]".

2. The targets move with constant angular velocity, but
the MMSE AWD system treats the motion as a random
walk 6, = fg(@k,l) = 61+ [1,—1]T; fg = f.l;
0o = [-80, —21]7.

In each case, the root mean squared error (RMSE) was nu-
merically approximated by averaging over 500 trials and the
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Fig. 1. RMSE and target motion for scenario 1

results are shown in Figs. 1 and 2 for scenarios 1 and 2, re-
spectively. For scenario 1, the reduction in MMSE peaked at
25%, at the 17th pulse; and for scenario 2 the reduction in
MMSE peaked at 29%, at the 11th pulse.

The results demonstrate that the MMSE AWD method im-
proves target parameter accuracy both when the system has
access to the statistical definition of the target motion (sce-
nario 1) and when there is a model mismatch (scenario 2).
To examine the nature of this improvement in a little more
detail, it is helpful to think of the estimation as consisting of
two parts: an initial target localisation, following by a contin-
uous estimation as the target is tracked. We can see that for
both scenarios the MMSE adaptive waveform design method
leads to a reduction in RMSE in the target localisation phase,
and for scenario 2 there also seems to be a ‘steady-state’ re-
duction in target parameter estimation variance. Further re-
sults (not included here owing to space constraints) confirm
that these two possibilities are typical (i.e., that we always
see a reduction in RMSE in target localisation and sometimes
in continuous estimation when using MMSE adaptive wave-
form design), however which occurs is not in general dictated
by whether there is a model mismatch (as may be concluded
by studying scenarios 1 and 2 alone).
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Fig. 2. RMSE and target motion for scenario 2

6. CONCLUSIONS

In this paper we have made four main contributions, which to-
gether represent an important step towards developing a the-
oretical method of MMSE AWD which can be implemented
in actual MIMO active sensing systems.

e We have extended the analysis in [13] for the case
where the active sensing system is tracking moving
targets. The formulation we provide includes the pos-
sibility of model mismatch.

e We have leveraged the fact that the targets are moving
to make the algorithm more computationally efficient.
Specifically, standard PF techniques of randomised par-
ticle initialisation and resampling are used.

e We also introduced the possibility of sampling the par-
ticles to estimate the mean of the parameters which
yields a further computational saving that is bespoke
to our AWD algorithm.

e We have presented numerical results that demonstrate
that our AWD algorithm does indeed improve target pa-
rameter estimation both with and without a model mis-
match.
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